Cannot Remember

I cannot remember myself, sometimes I look at the man in the mirror, not familiar any more. This man, has been laughing without constrains and spreading tears onto the ground, has been betrayed by his closed friend, and understand what “real contempt” is. This man, is smoothing his sword, and is hoping that he still remembers it; this man, is getting known some trial things, from what they call “transfer learning”, and is always fight inside his heart. This man, has so many dreams, and also know that only dream is daydream. Can this man stand up?! And let you know who he is, let you see his true character, though still in low standing. You can say millions of time that you are nothing but ton of shit, you are losing face to everybody, while inside you know that you are the most valuable and strongest one, if you want.

You can do anything, and it’s time.

留下评论

Filed under daily introspection

过去吧

今天,是心里特别难受的一天。

我是失去交流的能力了吗,我希望我还是一个靠谱的人。

我需要写字,但是已经几乎没有一个地方能让我写自己的心情了,希望这里还是。

我也希望能有人理解一下,可是没有,而我深知无法苛求。

文字愈发黑暗,没办法不使用种种隐喻,但在她眼里,看不到我的需要,而是不舒服,所有都不舒服。我一个人发牢骚,我不想让人看到,除了能懂的人,却没有一个理解的人。 在她眼里,写好的,是自我炫耀显得自己牛叉,写不好的,是故意把自己写得很落魄,字里行间都是让人不舒服的情绪。

哪怕是对最亲的人,都不要把自己的情绪显露出去,带一辈子面具生活吧,做一辈子的铁面人。没有人愿意做垃圾桶,工作上生活上的不顺心有谁会懂,或者说,想去懂,也许只有真正喜欢你的人才愿意去探求你的人生,而我,真的找到对的人了吗?春风得意时,你是淡定;身处低谷时,你是颓废;我一辈子也忘不掉这句话。伤害人哪里需要用什么脏字。

失望到了极限,也就淡然了。

留下评论

Filed under 未分类

meeting, getting CCR working, need to read lab_repo

Get CCR running in the early morning.

check out David fast kmeans and random forest

 

 

留下评论

Filed under 未分类

“godel-escher-bach”

Do not have time to read the whole book, but I  think I do need to watch the video and related pdf at least, it’s kind of urgent reading material considering my confusion in “uncertainty”.

http://ocw.mit.edu/high-school/courses/godel-escher-bach/video-lectures/

留下评论

Filed under R_repo

R_repo establish

Sometimes it’s easier to crash on something that you know you need to do or spend time on, while you cannot remember it when you have spare time or mood. R_repo is such a repository that contains random ideas, medias, sites, todos, etc that I need to archive.

Record should be date and topic based and completion notice should be added.

 

 

留下评论

Filed under R_repo

记录

从DC回来,过了3天,心收得慢,想在短期内恢复正常的生活,独自安下心来。

早上给家里打电话,意识到这一年都没有好好照顾家里,繁忙总是懒惰的借口,这一点,一定要改。除了懒懒的学习以及生活,整个人总是围绕两个人转,以至忽视了家人,也忽视了自己。关于专业,自信了一点;而对于个人的掌控,更自信些才好,扬志和陈伟都是学习的榜样,甚至王翔宇都有我学习的地方。

用几天时间好好想一想,好好收收心,也许真的应该像带一个队伍,不要反而被车与旅行拖下前行的步伐。

多话时间在自己身上,打工终究是打工,在自己身上投入才是正道,prioritize everything,实验室应打工的地方,家里给自己的idea留有空间,旅途是应是开放与自省的。整个世界,既是田野地,也是训练场。

Ubuntu要好好掌握,Python要好好掌握,作为一个vision人应有的专业也必须掌握,然而,人生是我的人生。

 

 

 

留下评论

Filed under 未分类

some paper

A primal-dual algorithm for group sparse regularization with overlapping groups

 

Object decoding with attention in inferior temporal cortex

 

A Performance Evaluation of Local Descriptors

 

Understanding and evaluating blind deconvolution algorithms

Modeling Search for People in 900 Scenes: A combined source model of eye guidance

Estimating perception of scene layout properties from global image features

Analyzing human feature learning as nonparametric Bayesian inference

A Global Geometric Framework
for Nonlinear Dimensionality
Reduction

What makes an image memorable?

Pictorial Structures Revisited: People Detection and Articulated Pose Estimation

Understanding and evaluating blind deconvolution algorithms

Perception of Face Parts and Face Configurations: An fMRI Study

From primal templates to invariant recognition(good)

 

Segmenting and Recognizing Human Action using Low-level Video Features

留下评论

Filed under 未分类

Mark

April 2nd 2011, I mark today and will come back with my sword in one year.

Who will be in charge?

留下评论

Filed under 未分类

corel results

 

mynewforcats(la_corel10,da_corel10,2,20,1000)

ave =

0.9262

0.9268

0.9283

0.9312

0.9323

0.9328

0.9292

0.9308

0.9298

0.9337

0.9340

0.9298

0.9328

0.9307

0.9297

average =

0.9305

stderror =

0.0024

Elapsed time is 9911.350589 seconds.

dog

sum =
2.2420    2.2870    2.3205    2.3325    2.3450    2.3385    2.3465    2.3410    2.3525    2.3435    2.3515    2.3510    2.3615    2.3605    2.3660

ave =
0.7473    0.7623    0.7735    0.7775    0.7817    0.7795    0.7822    0.7803    0.7842    0.7812    0.7838    0.7837    0.7872    0.7868    0.7887

average =
0.7787

stderror =
0.0108
Elapsed time is 10395.892309 seconds.

============================================================

>> RFCorelThis is class 1

example 100 trees: return rate 0.594500
example 200 trees: return rate 0.613500
example 300 trees: return rate 0.624500
example 400 trees: return rate 0.622000
example 500 trees: return rate 0.620500
example 600 trees: return rate 0.626500
example 700 trees: return rate 0.617500
example 800 trees: return rate 0.625500
example 900 trees: return rate 0.627000
example 1000 trees: return rate 0.624000
example 1100 trees: return rate 0.627000
example 1200 trees: return rate 0.619000
example 1300 trees: return rate 0.625500
example 1400 trees: return rate 0.625500
example 1500 trees: return rate 0.623500
retrate =
0.5945    0.6135    0.6245    0.6220    0.6205    0.6265    0.6175    0.6255    0.6270    0.6240    0.6270    0.6190    0.6255    0.6255    0.6235

sum =
0.5945    0.6135    0.6245    0.6220    0.6205    0.6265    0.6175    0.6255    0.6270    0.6240    0.6270    0.6190    0.6255    0.6255    0.6235

example 100 trees: return rate 0.576500
example 200 trees: return rate 0.596500
example 300 trees: return rate 0.607500
example 400 trees: return rate 0.596500
example 500 trees: return rate 0.611500
example 600 trees: return rate 0.610000
example 700 trees: return rate 0.614500
example 800 trees: return rate 0.603500
example 900 trees: return rate 0.614500
example 1000 trees: return rate 0.616000
example 1100 trees: return rate 0.611000
example 1200 trees: return rate 0.611500
example 1300 trees: return rate 0.612500
example 1400 trees: return rate 0.612500
example 1500 trees: return rate 0.616000
retrate =
0.5765    0.5965    0.6075    0.5965    0.6115    0.6100    0.6145    0.6035    0.6145    0.6160    0.6110    0.6115    0.6125    0.6125    0.6160

sum =
1.1710    1.2100    1.2320    1.2185    1.2320    1.2365    1.2320    1.2290    1.2415    1.2400    1.2380    1.2305    1.2380    1.2380    1.2395

example 100 trees: return rate 0.577000
example 200 trees: return rate 0.594000
example 300 trees: return rate 0.589500
example 400 trees: return rate 0.608500
example 500 trees: return rate 0.611000
example 600 trees: return rate 0.608000
example 700 trees: return rate 0.618500
example 800 trees: return rate 0.612000
example 900 trees: return rate 0.616500
example 1000 trees: return rate 0.614000
example 1100 trees: return rate 0.615000
example 1200 trees: return rate 0.616500
example 1300 trees: return rate 0.611000
example 1400 trees: return rate 0.615500
example 1500 trees: return rate 0.613000
retrate =
0.5770    0.5940    0.5895    0.6085    0.6110    0.6080    0.6185    0.6120    0.6165    0.6140    0.6150    0.6165    0.6110    0.6155    0.6130

sum =
1.7480    1.8040    1.8215    1.8270    1.8430    1.8445    1.8505    1.8410    1.8580    1.8540    1.8530    1.8470    1.8490    1.8535    1.8525

ave =
0.5827    0.6013    0.6072    0.6090    0.6143    0.6148    0.6168    0.6137    0.6193    0.6180    0.6177    0.6157    0.6163    0.6178    0.6175

average =
0.6121

stderror =
0.0095
Elapsed time is 10253.388715 seconds.This is class 4

example 100 trees: return rate 0.902500
example 200 trees: return rate 0.910000
example 300 trees: return rate 0.916000
example 400 trees: return rate 0.916000
example 500 trees: return rate 0.907000
example 600 trees: return rate 0.915500
example 700 trees: return rate 0.916000
example 800 trees: return rate 0.921000
example 900 trees: return rate 0.914000
example 1000 trees: return rate 0.913500
example 1100 trees: return rate 0.919000
example 1200 trees: return rate 0.918000
example 1300 trees: return rate 0.924000
example 1400 trees: return rate 0.922000
example 1500 trees: return rate 0.920500
retrate =
0.9025    0.9100    0.9160    0.9160    0.9070    0.9155    0.9160    0.9210    0.9140    0.9135    0.9190    0.9180    0.9240    0.9220    0.9205

sum =
0.9025    0.9100    0.9160    0.9160    0.9070    0.9155    0.9160    0.9210    0.9140    0.9135    0.9190    0.9180    0.9240    0.9220    0.9205

example 100 trees: return rate 0.937000
example 200 trees: return rate 0.943000
example 300 trees: return rate 0.946000
example 400 trees: return rate 0.951500
example 500 trees: return rate 0.949000
example 600 trees: return rate 0.956000
example 700 trees: return rate 0.954500
example 800 trees: return rate 0.952500
example 900 trees: return rate 0.951000
example 1000 trees: return rate 0.950000
example 1100 trees: return rate 0.957000
example 1200 trees: return rate 0.954000
example 1300 trees: return rate 0.950000
example 1400 trees: return rate 0.956500
example 1500 trees: return rate 0.953500
retrate =
0.9370    0.9430    0.9460    0.9515    0.9490    0.9560    0.9545    0.9525    0.9510    0.9500    0.9570    0.9540    0.9500    0.9565    0.9535

sum =
1.8395    1.8530    1.8620    1.8675    1.8560    1.8715    1.8705    1.8735    1.8650    1.8635    1.8760    1.8720    1.8740    1.8785    1.8740

example 100 trees: return rate 0.930500
example 200 trees: return rate 0.937500
example 300 trees: return rate 0.942000
example 400 trees: return rate 0.941000
example 500 trees: return rate 0.950000
example 600 trees: return rate 0.948000
example 700 trees: return rate 0.942000
example 800 trees: return rate 0.944500
example 900 trees: return rate 0.950500
example 1000 trees: return rate 0.947500
example 1100 trees: return rate 0.945000
example 1200 trees: return rate 0.947500
example 1300 trees: return rate 0.948000
example 1400 trees: return rate 0.944500
example 1500 trees: return rate 0.949500
retrate =
0.9305    0.9375    0.9420    0.9410    0.9500    0.9480    0.9420    0.9445    0.9505    0.9475    0.9450    0.9475    0.9480    0.9445    0.9495

sum =
2.7700    2.7905    2.8040    2.8085    2.8060    2.8195    2.8125    2.8180    2.8155    2.8110    2.8210    2.8195    2.8220    2.8230    2.8235

ave =
0.9233    0.9302    0.9347    0.9362    0.9353    0.9398    0.9375    0.9393    0.9385    0.9370    0.9403    0.9398    0.9407    0.9410    0.9412

average =
0.9370

stderror =
0.0048
Elapsed time is 10209.946971 seconds.This is class 6

example 100 trees: return rate 0.853000
example 200 trees: return rate 0.869500
example 300 trees: return rate 0.874000
example 400 trees: return rate 0.878500
example 500 trees: return rate 0.875000
example 600 trees: return rate 0.880500
example 700 trees: return rate 0.879500
example 800 trees: return rate 0.876000
example 900 trees: return rate 0.880000
example 1000 trees: return rate 0.878500
example 1100 trees: return rate 0.874500
example 1200 trees: return rate 0.880500
example 1300 trees: return rate 0.880500
example 1400 trees: return rate 0.877500
example 1500 trees: return rate 0.881000
retrate =
0.8530    0.8695    0.8740    0.8785    0.8750    0.8805    0.8795    0.8760    0.8800    0.8785    0.8745    0.8805    0.8805    0.8775    0.8810

sum =
0.8530    0.8695    0.8740    0.8785    0.8750    0.8805    0.8795    0.8760    0.8800    0.8785    0.8745    0.8805    0.8805    0.8775    0.8810

example 100 trees: return rate 0.833000
example 200 trees: return rate 0.859500
example 300 trees: return rate 0.862000
example 400 trees: return rate 0.855500
example 500 trees: return rate 0.864000
example 600 trees: return rate 0.866500
example 700 trees: return rate 0.869000
example 800 trees: return rate 0.866500
example 900 trees: return rate 0.865500
example 1000 trees: return rate 0.865500
example 1100 trees: return rate 0.870000
example 1200 trees: return rate 0.864500
example 1300 trees: return rate 0.865000
example 1400 trees: return rate 0.867000
example 1500 trees: return rate 0.867500
retrate =
0.8330    0.8595    0.8620    0.8555    0.8640    0.8665    0.8690    0.8665    0.8655    0.8655    0.8700    0.8645    0.8650    0.8670    0.8675

sum =
1.6860    1.7290    1.7360    1.7340    1.7390    1.7470    1.7485    1.7425    1.7455    1.7440    1.7445    1.7450    1.7455    1.7445    1.7485

example 100 trees: return rate 0.866500
example 200 trees: return rate 0.872000
example 300 trees: return rate 0.870500
example 400 trees: return rate 0.882000
example 500 trees: return rate 0.876000
example 600 trees: return rate 0.885000
example 700 trees: return rate 0.886000
example 800 trees: return rate 0.875500
example 900 trees: return rate 0.881000
example 1000 trees: return rate 0.883500
example 1100 trees: return rate 0.881000
example 1200 trees: return rate 0.880500
example 1300 trees: return rate 0.884500
example 1400 trees: return rate 0.882500
example 1500 trees: return rate 0.882000
retrate =
0.8665    0.8720    0.8705    0.8820    0.8760    0.8850    0.8860    0.8755    0.8810    0.8835    0.8810    0.8805    0.8845    0.8825    0.8820

sum =
2.5525    2.6010    2.6065    2.6160    2.6150    2.6320    2.6345    2.6180    2.6265    2.6275    2.6255    2.6255    2.6300    2.6270    2.6305

ave =
0.8508    0.8670    0.8688    0.8720    0.8717    0.8773    0.8782    0.8727    0.8755    0.8758    0.8752    0.8752    0.8767    0.8757    0.8768

average =
0.8726

stderror =
0.0068
Elapsed time is 10287.321622 seconds.This is class 8

example 100 trees: return rate 0.905000
example 200 trees: return rate 0.911000
example 300 trees: return rate 0.914000
example 400 trees: return rate 0.918000
example 500 trees: return rate 0.918500
example 600 trees: return rate 0.917000
example 700 trees: return rate 0.918000
example 800 trees: return rate 0.918500
example 900 trees: return rate 0.918500
example 1000 trees: return rate 0.920000
example 1100 trees: return rate 0.921000
example 1200 trees: return rate 0.920000
example 1300 trees: return rate 0.919500
example 1400 trees: return rate 0.919000
example 1500 trees: return rate 0.919000
retrate =
0.9050    0.9110    0.9140    0.9180    0.9185    0.9170    0.9180    0.9185    0.9185    0.9200    0.9210    0.9200    0.9195    0.9190    0.9190

sum =
0.9050    0.9110    0.9140    0.9180    0.9185    0.9170    0.9180    0.9185    0.9185    0.9200    0.9210    0.9200    0.9195    0.9190    0.9190

example 100 trees: return rate 0.893500
example 200 trees: return rate 0.904500
example 300 trees: return rate 0.900000
example 400 trees: return rate 0.905000
example 500 trees: return rate 0.905000
example 600 trees: return rate 0.901000
example 700 trees: return rate 0.903500
example 800 trees: return rate 0.904500
example 900 trees: return rate 0.903500
example 1000 trees: return rate 0.904500
example 1100 trees: return rate 0.907000
example 1200 trees: return rate 0.907500
example 1300 trees: return rate 0.907500
example 1400 trees: return rate 0.906000
example 1500 trees: return rate 0.908000
retrate =
0.8935    0.9045    0.9000    0.9050    0.9050    0.9010    0.9035    0.9045    0.9035    0.9045    0.9070    0.9075    0.9075    0.9060    0.9080

sum =
1.7985    1.8155    1.8140    1.8230    1.8235    1.8180    1.8215    1.8230    1.8220    1.8245    1.8280    1.8275    1.8270    1.8250    1.8270

example 100 trees: return rate 0.896500
example 200 trees: return rate 0.897000
example 300 trees: return rate 0.902500
example 400 trees: return rate 0.908500
example 500 trees: return rate 0.910500
example 600 trees: return rate 0.907000
example 700 trees: return rate 0.907000
example 800 trees: return rate 0.912000
example 900 trees: return rate 0.910000
example 1000 trees: return rate 0.907500
example 1100 trees: return rate 0.911000
example 1200 trees: return rate 0.911000
example 1300 trees: return rate 0.907500
example 1400 trees: return rate 0.909000
example 1500 trees: return rate 0.909500
retrate =
0.8965    0.8970    0.9025    0.9085    0.9105    0.9070    0.9070    0.9120    0.9100    0.9075    0.9110    0.9110    0.9075    0.9090    0.9095

sum =
2.6950    2.7125    2.7165    2.7315    2.7340    2.7250    2.7285    2.7350    2.7320    2.7320    2.7390    2.7385    2.7345    2.7340    2.7365

ave =
0.8983    0.9042    0.9055    0.9105    0.9113    0.9083    0.9095    0.9117    0.9107    0.9107    0.9130    0.9128    0.9115    0.9113    0.9122

average =
0.9094

stderror =
0.0040
Elapsed time is 10150.352861 seconds.This is class 9

example 100 trees: return rate 0.582500
example 200 trees: return rate 0.596000
example 300 trees: return rate 0.609000
example 400 trees: return rate 0.617500
example 500 trees: return rate 0.615500
example 600 trees: return rate 0.622000
example 700 trees: return rate 0.620000
example 800 trees: return rate 0.622500
example 900 trees: return rate 0.613500
example 1000 trees: return rate 0.610000
example 1100 trees: return rate 0.624000
example 1200 trees: return rate 0.614000
example 1300 trees: return rate 0.615500
example 1400 trees: return rate 0.623500
example 1500 trees: return rate 0.624500
retrate =
0.5825    0.5960    0.6090    0.6175    0.6155    0.6220    0.6200    0.6225    0.6135    0.6100    0.6240    0.6140    0.6155    0.6235    0.6245

sum =
0.5825    0.5960    0.6090    0.6175    0.6155    0.6220    0.6200    0.6225    0.6135    0.6100    0.6240    0.6140    0.6155    0.6235    0.6245

example 100 trees: return rate 0.580000
example 200 trees: return rate 0.575500
example 300 trees: return rate 0.592500
example 400 trees: return rate 0.583500
example 500 trees: return rate 0.578500
example 600 trees: return rate 0.588000
example 700 trees: return rate 0.593000
example 800 trees: return rate 0.592500
example 900 trees: return rate 0.585000
example 1000 trees: return rate 0.591500
example 1100 trees: return rate 0.589000
example 1200 trees: return rate 0.590500
example 1300 trees: return rate 0.588000
example 1400 trees: return rate 0.594500
example 1500 trees: return rate 0.600000
retrate =
0.5800    0.5755    0.5925    0.5835    0.5785    0.5880    0.5930    0.5925    0.5850    0.5915    0.5890    0.5905    0.5880    0.5945    0.6000

sum =
1.1625    1.1715    1.2015    1.2010    1.1940    1.2100    1.2130    1.2150    1.1985    1.2015    1.2130    1.2045    1.2035    1.2180    1.2245

example 100 trees: return rate 0.575500
example 200 trees: return rate 0.595000
example 300 trees: return rate 0.596000
example 400 trees: return rate 0.601000
example 500 trees: return rate 0.607000
example 600 trees: return rate 0.600500
example 700 trees: return rate 0.608000
example 800 trees: return rate 0.607500
example 900 trees: return rate 0.604000
example 1000 trees: return rate 0.603500
example 1100 trees: return rate 0.603500
example 1200 trees: return rate 0.606000
example 1300 trees: return rate 0.608500
example 1400 trees: return rate 0.597000
example 1500 trees: return rate 0.610500
retrate =
0.5755    0.5950    0.5960    0.6010    0.6070    0.6005    0.6080    0.6075    0.6040    0.6035    0.6035    0.6060    0.6085    0.5970    0.6105

sum =
1.7380    1.7665    1.7975    1.8020    1.8010    1.8105    1.8210    1.8225    1.8025    1.8050    1.8165    1.8105    1.8120    1.8150    1.8350

ave =
0.5793    0.5888    0.5992    0.6007    0.6003    0.6035    0.6070    0.6075    0.6008    0.6017    0.6055    0.6035    0.6040    0.6050    0.6117

average =
0.6012

stderror =
0.0079
Elapsed time is 10269.549770 seconds.This is class 10

example 100 trees: return rate 0.665500
example 200 trees: return rate 0.674000
example 300 trees: return rate 0.684000
example 400 trees: return rate 0.689500
example 500 trees: return rate 0.692000
example 600 trees: return rate 0.684500
example 700 trees: return rate 0.682000
example 800 trees: return rate 0.693000
example 900 trees: return rate 0.696000
example 1000 trees: return rate 0.677000
example 1100 trees: return rate 0.698500
example 1200 trees: return rate 0.691500
example 1300 trees: return rate 0.688000
example 1400 trees: return rate 0.693000
example 1500 trees: return rate 0.698000
retrate =
0.6655    0.6740    0.6840    0.6895    0.6920    0.6845    0.6820    0.6930    0.6960    0.6770    0.6985    0.6915    0.6880    0.6930    0.6980

sum =
0.6655    0.6740    0.6840    0.6895    0.6920    0.6845    0.6820    0.6930    0.6960    0.6770    0.6985    0.6915    0.6880    0.6930    0.6980

example 100 trees: return rate 0.650000
example 200 trees: return rate 0.677000
example 300 trees: return rate 0.675000
example 400 trees: return rate 0.680500
example 500 trees: return rate 0.678000
example 600 trees: return rate 0.692000
example 700 trees: return rate 0.681500
example 800 trees: return rate 0.687000
example 900 trees: return rate 0.682000
example 1000 trees: return rate 0.682500
example 1100 trees: return rate 0.687500
example 1200 trees: return rate 0.692000
example 1300 trees: return rate 0.682000
example 1400 trees: return rate 0.687500
example 1500 trees: return rate 0.686000
retrate =
0.6500    0.6770    0.6750    0.6805    0.6780    0.6920    0.6815    0.6870    0.6820    0.6825    0.6875    0.6920    0.6820    0.6875    0.6860

sum =
1.3155    1.3510    1.3590    1.3700    1.3700    1.3765    1.3635    1.3800    1.3780    1.3595    1.3860    1.3835    1.3700    1.3805    1.3840

example 100 trees: return rate 0.638000
example 200 trees: return rate 0.653000
example 300 trees: return rate 0.663000
example 400 trees: return rate 0.679000
example 500 trees: return rate 0.679000
example 600 trees: return rate 0.688000
example 700 trees: return rate 0.682500
example 800 trees: return rate 0.667500
example 900 trees: return rate 0.674000
example 1000 trees: return rate 0.680500
example 1100 trees: return rate 0.673500
example 1200 trees: return rate 0.680000
example 1300 trees: return rate 0.681500
example 1400 trees: return rate 0.681000
example 1500 trees: return rate 0.678500
retrate =
0.6380    0.6530    0.6630    0.6790    0.6790    0.6880    0.6825    0.6675    0.6740    0.6805    0.6735    0.6800    0.6815    0.6810    0.6785

sum =
1.9535    2.0040    2.0220    2.0490    2.0490    2.0645    2.0460    2.0475    2.0520    2.0400    2.0595    2.0635    2.0515    2.0615    2.0625

ave =
0.6512    0.6680    0.6740    0.6830    0.6830    0.6882    0.6820    0.6825    0.6840    0.6800    0.6865    0.6878    0.6838    0.6872    0.6875

average =
0.6806

stderror =
0.0098
Elapsed time is 10093.440792 seconds.

留下评论

Filed under 未分类

Review of following 2-3 weeks

In the following three weeks, I did normally did these things:

1. Caiming’s RF experiments on Corel dataset

2. PCA HW and some part of NS2 prj

3. prepare for the 2 exams

On average I may work 8-10 hours everyday for the following 3 weeks, stay late to 4am twice and stay all night twice.

I did pretty much on RF, fair on PCA hw, few on NS2 and very poor on mid-term. I have to stand all the negative comments and pressure, though I know I gonna conquer it later, if possible. The judgments of others, no matter without conscious or with intention, would not beat me as far as its property, but would do bother me.

What I should now face directly is the frustration from inner, the situation is not like lase semester, when I still can convince myself that I can make it if I really intend to. Now, there is some inner conflict in terms of whether or not, I can make it, considering the endeavor I have payed. I cannot convince myself I can definitely do it, I have to drag myself in the column of observation, to see, with more endeavor and devotion, can I do it.

I must prepare for the worst from now on, prepare for the abandon from people I who thought I am good, from people who I care, no matter how small the likelihood is.

==================================================

As for the future

This weekend, is in emergency of finishing NS2 project, it is what I must do.

In the spring break, I will do the following:

1) Finish most of the experiments of RF, including comparison to DCA, ITML, etc

2) Start new experiments on Yale face dataset

3) Start Action Recognition project with Caiming, make the most of the help from Gang and Wei, in specific, I must extract all the method/formulation, result/dataset and graphs of literature from Gang. Discuss with Caiming about the formulation of the problem, before that I should have read 3-4 key papers ahead. Thirdly, get relevant code(data input, etc) from Chen Wei and discuss.

4)prepare for the Algorithm midterm, which I should definitely win cause it is really not a very complex one. Start early.

5) Project2 of Network, do a start

6) Grade HW6 of 191 and prepare for a large jump next week

7) HW3 of PR, no error permitted

Besides, I should focus on course study along with all these things, because I cannot just prepare for a week and meet the final, which will destroy me totally.

Some trivial things:

1) Driving permit

2) National Feul

3) B-mall to get enough clothes

======================================================

Some regulations stressed

1) No web surfing during daytime, less than 10 min permitted each day

2) No need to eat/go home with home mates, it really costs a lot of time and has a dangerous potential that abuse me to these companion feeling. I should do lonely sometimes, just like in Tianjin, do all the things by myself and enjoy myself.

3) Communicate with Caiming, Gang, Wei, Shaoming intendedly.

4) Work harder, work wiser.

5) You are nothing, really nothing, so do everything

 

留下评论

Filed under 未分类